Abstract
AbstractNo Hopf–Rinow Theorem is possible in Lorentzian Geometry. Nonetheless, we prove that a spacetime is globally hyperbolic if and only if it is metrically complete with respect to the null distance of a time function. Our approach is based on the observation that null distances behave particularly well for weak temporal functions in terms of regularity and causality. Specifically, we also show that the null distances of Cauchy temporal functions and regular cosmological time functions encode causality globally.
Funder
Nederlandse Organisatie voor Wetenschappelijk Onderzoek
Publisher
Springer Science and Business Media LLC
Reference55 articles.
1. Allen, B., Burtscher, A.: Properties of the null distance and spacetime convergence. Int. Math. Res. Not. IMRN 10, 7729–7808 (2022)
2. Ambrosio, L., Gigli, N., Savaré, G.: Gradient flows in metric spaces and in the space of probability measures. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel, Second (2008)
3. Ambrosio, L., Kirchheim, B.: Currents in metric spaces. Acta Math. 185(1), 1–80 (2000)
4. Andersson, L., Galloway, G.J., Howard, R.: The cosmological time function. Clas- sical Quantum Gravity 15(2), 309–322 (1998)
5. Avez, A.: Essais de géométrie riemannienne hyperbolique globale. Applications à la relativité générale. Ann. Inst. Fourier (Grenoble) 13 (fasc. 2):105-190, (1963)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献