Particle-Hole Transformation in the Continuum and Determinantal Point Processes

Author:

Alshehri Maryam Gharamah Ali,Lytvynov EugeneORCID

Abstract

AbstractLet X be an underlying space with a reference measure $$\sigma $$ σ . Let K be an integral operator in $$L^2(X,\sigma )$$ L 2 ( X , σ ) with integral kernel K(xy). A point process $$\mu $$ μ on X is called determinantal with the correlation operator K if the correlation functions of $$\mu $$ μ are given by $$k^{(n)}(x_1,\dots ,x_n)={\text {det}}[K(x_i,x_j)]_{i,j=1,\dots ,n}$$ k ( n ) ( x 1 , , x n ) = det [ K ( x i , x j ) ] i , j = 1 , , n . It is known that each determinantal point process with a self-adjoint correlation operator K is the joint spectral measure of the particle density $$\rho (x)=\mathcal A^+(x)\mathcal A^-(x)$$ ρ ( x ) = A + ( x ) A - ( x ) ($$x\in X$$ x X ), where the operator-valued distributions $$\mathcal A^+(x)$$ A + ( x ) , $$\mathcal A^-(x)$$ A - ( x ) come from a gauge-invariant quasi-free representation of the canonical anticommutation relations (CAR). If the space X is discrete and divided into two disjoint parts, $$X_1$$ X 1 and $$X_2$$ X 2 , by exchanging particles and holes on the $$X_2$$ X 2 part of the space, one obtains from a determinantal point process with a self-adjoint correlation operator K the determinantal point process with the J-self-adjoint correlation operator $$\widehat{K}=KP_1+(1-K)P_2$$ K ^ = K P 1 + ( 1 - K ) P 2 . Here $$P_i$$ P i is the orthogonal projection of $$L^2(X,\sigma )$$ L 2 ( X , σ ) onto $$L^2(X_i,\sigma )$$ L 2 ( X i , σ ) . In the case where the space X is continuous, the exchange of particles and holes makes no sense. Instead, we apply a Bogoliubov transformation to a gauge-invariant quasi-free representation of the CAR. This transformation acts identically on the $$X_1$$ X 1 part of the space and exchanges the creation operators $$\mathcal A^+(x)$$ A + ( x ) and the annihilation operators $$\mathcal A^-(x)$$ A - ( x ) for $$x\in X_2$$ x X 2 . This leads to a quasi-free representation of the CAR, which is not anymore gauge-invariant. We prove that the joint spectral measure of the corresponding particle density is the determinantal point process with the correlation operator $$\widehat{K}$$ K ^ .

Publisher

Springer Science and Business Media LLC

Subject

Mathematical Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3