Abstract
AbstractThe super-Macdonald polynomials, introduced by Sergeev and Veselov (Commun Math Phys 288: 653–675, 2009), generalise the Macdonald polynomials to (arbitrary numbers of) two kinds of variables, and they are eigenfunctions of the deformed Macdonald–Ruijsenaars operators introduced by the same authors in Sergeev and Veselov (Commun Math Phys 245: 249–278, 2004). We introduce a Hermitian form on the algebra spanned by the super-Macdonald polynomials, prove their orthogonality, compute their (quadratic) norms explicitly, and establish a corresponding Hilbert space interpretation of the super-Macdonald polynomials and deformed Macdonald–Ruijsenaars operators. This allows for a quantum mechanical interpretation of the models defined by the deformed Macdonald–Ruijsenaars operators. Motivated by recent results in the nonrelativistic ($$q\rightarrow 1$$
q
→
1
) case, we propose that these models describe the particles and anti-particles of an underlying relativistic quantum field theory, thus providing a natural generalisation of the trigonometric Ruijsenaars model.
Funder
Vetenskapsrådet
Stiftelsen Olle Engkvist Byggmästare
Japan Society for the Promotion of Science
Publisher
Springer Science and Business Media LLC
Subject
Mathematical Physics,Statistical and Nonlinear Physics
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献