Abstract
AbstractWe construct a Fock model of the minimal representation of the exceptional Lie supergroup $${\mathbb {D}}(2,1; \alpha )$$
D
(
2
,
1
;
α
)
. Explicit expressions for the action are given by integrating to group level a Fock model of the Lie superalgebra $$D(2,1; \alpha )$$
D
(
2
,
1
;
α
)
constructed earlier by the authors. It is also shown that the representation is superunitary in the sense of de Goursac–Michel.
Funder
Fonds Wetenschappelijk Onderzoek
Publisher
Springer Science and Business Media LLC
Subject
Mathematical Physics,Statistical and Nonlinear Physics
Reference24 articles.
1. Barbier, S., Claerebout, S.: A Schrödinger model, Fock model and intertwining Segal-Bargmann transform for the exceptional Lie superalgebra $$D(2, 1; \alpha )$$. J. Lie Theory 31(4), 1153–1188 (2021)
2. de Goursac, A., Michel, J.-P.: Superunitary representations of Heisenberg supergroups. Int. Math. Res. Not. IMRN, 08 (2018). rny184
3. Brylinski, R., Kostant, B.: Minimal representations, geometric quantizations, and unitarity. Proc. Natl. Acad. Sci. U.S.A. 91(13), 6026–6029 (1994)
4. Dvorsky, A., Sahi, S.: Explicit Hilbert spaces for certain unipotent representations. II. Invent. Math. 138(1), 203–224 (1999)
5. Gan, W.T., Savin, G.: On minimal representations definitions and properties. Represent. Theory 9, 46–93 (2005)