Abstract
AbstractWe establish an infinite family of solutions in terms of elliptic functions of the lattice Boussinesq systems by setting up a direct linearisation scheme, which provides the solution structure for those equations in the elliptic case. The latter, which contains as main structural element a Cauchy kernel on the torus, is obtained from a dimensional reduction of the elliptic direct linearisation scheme of the lattice Kadomtsev–Petviashvili equation, which requires the introduction of a novel technical concept, namely the ‘elliptic cube root of unity’. Thus, in order to implement the reduction we define, more generally, the notion of elliptic$$N{\textrm{th}}$$
N
th
root of unity, and discuss some of its properties in connection with a special class of elliptic addition formulae. As a particular concrete application we present the class of elliptic multi-soliton solutions of the lattice Boussinesq systems.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
Mathematical Physics,Statistical and Nonlinear Physics
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献