Abstract
AbstractWe develop a general framework for studying ergodicity of order-preserving Markov semigroups. We establish natural and in a certain sense optimal conditions for existence and uniqueness of the invariant measure and exponential convergence of transition probabilities of an order-preserving Markov process. As an application, we show exponential ergodicity and exponentially fast synchronization-by-noise of the stochastic reaction–diffusion equation in the hypoelliptic setting. This refines and complements corresponding results of Hairer and Mattingly (Electron J Probab 16:658–738, 2011).
Funder
Weierstraß-Institut für Angewandte Analysis und Stochastik, Leibniz-Institut im Forschungsverbund Berlin e.V.
Publisher
Springer Science and Business Media LLC
Subject
Mathematical Physics,Statistical and Nonlinear Physics
Reference38 articles.
1. Bahouri, H., Chemin, J.-Y., Danchin, R.: Fourier Analysis and Nonlinear Partial Differential Equations. Springer, Heidelberg (2011)
2. Butkovsky, O., Kulik, A., Scheutzow, M.: Generalized couplings and ergodic rates for SPDEs and other Markov models. Ann. Appl. Probab. 30, 1–39 (2020)
3. Butkovsky, O., Scheutzow, M.: Invariant measures for stochastic functional differential equations. Electr. J. Probab. 22, 1–23 (2017)
4. Chueshov, I., Scheutzow, M.: On the structure of attractors and invariant measures for a class of monotone random systems. Dyn. Syst. 19, 127–144 (2004)
5. Constantin, P., Glatt-Holtz, N.E., Vicol, V.: Unique ergodicity for fractionally dissipated, stochastically forced 2D Euler equations. Commun. Math. Phys. 330, 819–857 (2014)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献