Quantitative evaluation of geological fluid evolution and accumulated mechanism: in case of tight sandstone gas field in central Sichuan Basin

Author:

Huang Ya-Hao,Tang You-Jun,Li Mei-Jun,Hong Hai-Tao,Wu Chang-Jiang,Zhang Ji-Zhen,Lu Xiao-Lin,Yang Xiao-Yong

Abstract

AbstractTight gas exploration plays an important part in China’s unconventional energy strategy. The tight gas reservoirs in the Jurassic Shaximiao Formation in the Qiulin and Jinhua Gas Fields of central Sichuan Basin are characterized by shallow burial depths and large reserves. The evolution of the fluid phases is a key element in understanding the accumulation of hydrocarbons in tight gas reservoirs. This study investigates the fluid accumulation mechanisms and the indicators of reservoir properties preservation and degradation in a tight gas reservoir. Based on petrographic observations and micro-Raman spectroscopy, pure CH4 inclusions, pure CO2 inclusions, hybrid CH4–CO2 gas inclusions, and N2-rich gas inclusions were studied in quartz grains. The pressure–volume–temperature–composition properties (PVT-x) of the CH4 and CO2 bearing inclusions were determined using quantitative Raman analysis and thermodynamic models, while the density of pure CO2 inclusions was calculated based on the separation of Fermi diad. Two stages of CO2 fluid accumulation were observed: primary CO2 inclusions, characterized by higher densities (0.874–1.020 g/cm3) and higher homogenization temperatures (> 210 °C) and secondary CO2 inclusions, characterized by lower densities (0.514–0.715 g/cm3) and lower homogenization temperatures: ~ 180–200 °C). CO2 inclusions with abnormally high homogenization temperatures are thought to be the result of deep hydrothermal fluid activity. The pore fluid pressure (44.0–58.5 MPa) calculated from the Raman shift of C–H symmetric stretching (v1) band of methane inclusions is key to understanding the development of overpressure. PT entrapment conditions and simulation of burial history can be used to constrain the timing of paleo-fluid emplacement. Methane accumulated in the late Cretaceous (~ 75–65 Ma), close to the maximum burial depth during the early stages of the Himalayan tectonic event while maximum overpressure occurred at ~ 70 Ma, just before uplift. Later, hydrocarbon gas migrated through the faults and gradually displaced the early emplaced CO2 in the reservoirs accompanied by a continuous decrease in overpressure during and after the Himalayan event, which has led to a decrease in the reservoir sealing capabilities. The continuous release of overpressure to present-day conditions indicates that the tectonic movement after the Himalayan period has led to a decline in reservoir conditions and sealing properties.

Publisher

Elsevier BV

Subject

Economic Geology,Geochemistry and Petrology,Geology,Geophysics,Energy Engineering and Power Technology,Geotechnical Engineering and Engineering Geology,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3