Compatibility evaluation of modified seawater for EOR in carbonate reservoirs through the introduction of polyphosphate compound

Author:

Ghosh Bisweswar,Sun Liying,Thomas Nithin Chacko

Abstract

Abstract Waterflood-assisted oil recovery with sulfate-spiked seawater would cause incompatibility scaling in carbonate reservoirs and reduce economic benefits. This research investigated the benefits of polyphosphate compounds in reducing scaling potential as well as its effect on oil recovery when mixed in high sulfate flood water. Severity of scaling potential of sulfate-spiked water in a carbonate reservoir environment was measured, followed by systematic screening of a polyphosphate compound, which successfully inhibited the sulfate scale precipitation at concentration as low as 100 ppm. The new formulation (seawater with four times sulfate and phosphate, SW4SP) was evaluated and compared with benchmark formulation (modified seawater with four times sulfate, SW4S). Contact angle, ζ-potential and drainage studies show that SW4SP changed the rock wettability from oil wet to water wet to a larger degree compared to SW4S. Improved recovery efficiency of SW4SP was confirmed through a set of core flooding studies in the tertiary and quaternary flood modes. Whereas SW4S recovered 7.7% of original oil in place (OOIP), SW4SP recovered about 8% of OOIP in the tertiary mode under approximately identical flow conditions. Flooding with SW4SP in the quaternary mode following a tertiary flood with SW4S on the same core resulted in 1.7% additional oil recovery, showing improved efficiency of the new flood water formulation.

Publisher

Elsevier BV

Subject

Economic Geology,Geochemistry and Petrology,Geology,Geophysics,Energy Engineering and Power Technology,Geotechnical Engineering and Engineering Geology,Fuel Technology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3