Author:
Lin Botao,Meng Han,Pan Jingjun,Chen Sen
Abstract
AbstractStimulation of unconsolidated formations via horizontal wells has seen its vast implementation in the recent development of heavy oil reservoir to save the time and cost of preheating the reservoir before the steam-assisted gravity drainage (SAGD) process. A mathematical approach was proposed in this research that fully couples the hydraulic, mechanical and thermal responses of unconsolidated sandstone formations and also applies failure criteria for describing either shear dilation or tensile parting mechanism that generates microcracks. The approach was implemented to predict the porothermoelastic response of a pair of SAGD wells subject to injection and subsequent micro-fracturing using hot water. It was found that the predicted bottom hole pressures (BHPs) match closely with the field observed data. An elliptical dilation zone developed around the dual wells with relatively high pore pressure, porosity, permeability and temperature, implying good interwell hydraulic communication between both wells. The activation of microcracks dramatically accelerated the dissipation of pore pressure across the entire formation depth and also facilitated heat convection in between the dual wells, though to a lesser extent. In summary, the approach provides a convenient means to assist field engineers in the optimization of injection efficiency and evaluation of interference among multiple horizontal wells.
Subject
Economic Geology,Geochemistry and Petrology,Geology,Geophysics,Energy Engineering and Power Technology,Geotechnical Engineering and Engineering Geology,Fuel Technology
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献