Thermal maturity evaluation using Raman spectroscopy for oil shale samples of USA: comparisons with vitrinite reflectance and pyrolysis methods

Author:

Kibria Md. Golam,Das Souvik,Hu Qin-Hong,Basu Asish R.,Hu Wen-Xuan,Mandal Subhadip

Abstract

AbstractThermal maturity is commonly assessed by various geochemical screening methods (e.g., pyrolysis and organic petrology). In this contribution, we attempt to establish an alternative approach to estimating thermal maturity with Raman spectroscopy, using 24 North American oil shale samples with thermal maturity data generated by vitrinite reflectance (VRo%) and pyrolysis (Tmax)-based maturity calculation (VRe%). The representative shale samples are from the Haynesville (East Texas), Woodford (West Texas), Eagle Ford and Pearsall (South Texas) Formations, as well as Gothic, Mancos, and Niobrara Formation shales (all from Colorado). The Raman spectra of disordered carbonaceous matter (D1 and G bands separation) of these samples were directly obtained from the rock chips without prior sample preparation. Using the Gaussian and Lorentzian distribution approach, thermal maturities from VR were correlated with carbon G and D1. We found that the Raman band separation (RBS) displayed a better correlation for equivalent VRe% than vitrinite reflectance VRo%. The RBS (D1–G) distance versus total organic carbon, free hydrocarbons from thermal extraction (S1), and the remaining hydrocarbon generating potential (S2) indicate that the RBS (D1–G) distance is also related to kerogen type. Data presented here from three methods of maturity determination of shale demonstrate that Raman spectroscopy is a quick and valid approach to thermal maturity assessment.

Publisher

Elsevier BV

Subject

Economic Geology,Geochemistry and Petrology,Geology,Geophysics,Energy Engineering and Power Technology,Geotechnical Engineering and Engineering Geology,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3