Performance comparison of novel chemical agents in improving oil recovery from tight sands through spontaneous imbibition

Author:

Huang Hai,Babadagli Tayfun,Chen Xin,Andy Li Huazhou

Abstract

Abstract Tight sands are abundant in nanopores leading to a high capillary pressure and normally a low fluid injectivity. As such, spontaneous imbibition might be an effective mechanism for improving oil recovery from tight sands after fracturing. The chemical agents added to the injected water can alter the interfacial properties, which could help further enhance the oil recovery by spontaneous imbibition. This study explores the possibility of using novel chemicals to enhance oil recovery from tight sands via spontaneous imbibition. We experimentally examine the effects of more than ten different chemical agents on spontaneous imbibition, including a cationic surfactant (C12TAB), two anionic surfactants (O242 and O342), an ionic liquid (BMMIM BF4), a high pH solution (NaBO2), and a series of house-made deep eutectic solvents (DES3–7, 9, 11, and 14). The interfacial tensions (IFT) between oil phase and some chemical solutions are also determined. Experimental results indicate that both the ionic liquid and cationic surfactant used in this study are detrimental to spontaneous imbibition and decrease the oil recovery from tight sands, even though cationic surfactant significantly decreases the oil–water IFT while ionic liquid does not. The high pH NaBO2 solution does not demonstrate significant effect on oil recovery improvement and IFT reduction. The anionic surfactants (O242 and O342) are effective in enhancing oil recovery from tight sands through oil–water IFT reduction and emulsification effects. The DESs drive the rock surface to be more water-wet, and a specific formulation (DES9) leads to much improvement on oil recovery under counter-current imbibition condition. This preliminary study would provide some knowledge about how to optimize the selection of chemicals for improving oil recovery from tight reservoirs.

Publisher

Elsevier BV

Subject

Economic Geology,Geochemistry and Petrology,Geology,Geophysics,Energy Engineering and Power Technology,Geotechnical Engineering and Engineering Geology,Fuel Technology

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3