Flow simulation considering adsorption boundary layer based on digital rock and finite element method

Author:

Yang Yong-Fei,Wang Ke,Lv Qian-Fei,Askari Roohollah,Mei Qing-Yan,Yao Jun,Hou Jie-Xin,Zhang Kai,Li Ai-Fen,Wang Chen-Chen

Abstract

AbstractDue to the low permeability of tight reservoirs, throats play a significant role in controlling fluid flow. Although many studies have been conducted to investigate fluid flow in throats in the microscale domain, comparatively fewer works have been devoted to study the effect of adsorption boundary layer (ABL) in throats based on the digital rock method. By considering an ABL, we investigate its effects on fluid flow. We build digital rock model based on computed tomography technology. Then, microscopic pore structures are extracted with watershed segmentation and pore geometries are meshed through Delaunay triangulation approach. Finally, using the meshed digital simulation model and finite element method, we investigate the effects of viscosity and thickness of ABL on microscale flow. Our results demonstrate that viscosity and thickness of ABL are major factors that significantly hinder fluid flow in throats.

Publisher

Elsevier BV

Subject

Economic Geology,Geochemistry and Petrology,Geology,Geophysics,Energy Engineering and Power Technology,Geotechnical Engineering and Engineering Geology,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3