Hydrocarbon generation from lacustrine shales with retained oil during thermal maturation

Author:

Shao Xin-He,Pang Xiong-Qi,Li Mao-Wen,Li Zhi-Ming,Zhao Yi

Abstract

AbstractThermal maturation in the shale oil/gas system is inherently complex due to the competitive interplays between hydrocarbon generation and retention processes. To study hydrocarbon generation characteristics from shales within different stages of thermal maturation under the influence of retained oil, we performed Micro-Scale Sealed Vessels (MSSV) pyrolysis on a set of artificially matured lacustrine shale samples from the Shahejie Formation in the Dongpu Depression in Bohai Bay Basin, China. Experimental results show that hydrocarbon yields of shale samples with or without retained oil at various thermal maturities follow different evolution paths. Heavy components (C15+) in samples crack at high temperatures and generally follow a sequence, where they first transform into C6–14 then to C2–5 and C1. Methane accounts for most of the gaseous products at high temperatures in all samples, with different origins. The cracking of C2–5 is the main methane-generating process in samples with retained oil, whereas the source of methane in samples without retained oil is kerogen. In the studied shales, retained oils at early-mature stage retard the transformation of liquid to gaseous hydrocarbon and prompt the cracking of C2–5 to C1 to some extent. TSR reaction related to gypsum in the studied samples is the primary reason that can explain the loss of hydrocarbon yields, especially at high temperatures. In addition, transformation of volatile hydrocarbons to gas and coke also accounts for the loss of generated hydrocarbon, as a secondary factor.

Publisher

Elsevier BV

Subject

Economic Geology,Geochemistry and Petrology,Geology,Geophysics,Energy Engineering and Power Technology,Geotechnical Engineering and Engineering Geology,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3