Interactions of ferro-nanoparticles (hematite and magnetite) with reservoir sandstone: implications for surface adsorption and interfacial tension reduction

Author:

Ali Abdullah Musa,Yahya Noorhana,Qureshi Saima

Abstract

AbstractThere are a few studies on the use of ferro-nanofluids for enhanced oil recovery, despite their magnetic properties; hence, it is needed to study the adsorption of iron oxide (Fe2O3 and Fe3O4) nanoparticles (NPs) on rock surfaces. This is important as the colloidal transport of NPs through the reservoir is subject to particle adsorption on the rock surface. Molecular dynamics simulation was used to determine the interfacial energy (strength) and adsorption of Fe2O3 and Fe3O4 nanofluids infused in reservoir sandstones. Fourier transform infrared spectroscopy and X-ray photon spectroscopy (XPS) were used to monitor interaction of silicate species with Fe2O3 and Fe3O4. The spectral changes show the variation of dominating silicate anions in the solution. Also, the XPS peaks for Si, C and Fe at 190, 285 and 700 eV, respectively, are less distinct in the spectra of sandstone aged in the Fe3O4 nanofluid, suggesting the intense adsorption of the Fe3O4 with the crude oil. The measured IFT for brine/oil, Fe2O3/oil and Fe3O4/oil are 40, 36.17 and 31 mN/m, respectively. Fe3O4 infused with reservoir sandstone exhibits a higher silicate sorption capacity than Fe2O3, due to their larger number of active surface sites and saturation magnetization, which accounts for the effectiveness of Fe3O4 in reducing IFT.

Publisher

Elsevier BV

Subject

Economic Geology,Geochemistry and Petrology,Geology,Geophysics,Energy Engineering and Power Technology,Geotechnical Engineering and Engineering Geology,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3