n-Nonane hydroisomerization over hierarchical SAPO-11-based catalysts with sodium dodecylbenzene sulfonate as a dispersant

Author:

Wen Cheng-Long,Xu Jun-Dong,Wang Xue-Man,Fan Yu

Abstract

AbstractTo enhance the gasoline octane number, low-octane linear n-alkanes should be converted into their high-octane di-branched isomers via n-alkane hydroisomerization. Therefore, hierarchical SAPO-11-based catalysts are prepared by adding different contents of sodium dodecylbenzene sulfonate (SDBS), and they are applied in n-nonane hydroisomerization. When n(SDBS)/n(SiO2) is less than or equal to 0.125, the synthesized hierarchical molecular sieves are all pure SAPO-11, and as the SDBS content increases, the submicron particle size decreases, and the external surface area (ESA) increases. Additionally, these hierarchical SAPO-11 have smaller submicron particles and higher ESA values than conventional SAPO-11. When n(SDBS)/n(SiO2) is greater than 0.125, with increasing SDBS content (n(SDBS)/n(SiO2) = 0.25), the synthesized SAPO-11 contains amorphous materials, which leads to a decline in the ESA; with the further increase in SDBS content (n(SDBS)/n(SiO2) = 0.5), the products are all amorphous materials. These results indicate that in the case of n(SDBS)/n(SiO2) = 0.125, the synthesized SAPO-11 molecular sieve (S–S3) has the most external Brønsted acid centers and the highest ESA of these SAPO-11, and these advantages favor generation of the di-branched isomers in hydrocarbon hydroisomerization. Among these Pt/SAPO-11 catalysts, Pt/S–S3 displays the highest selectivity to entire isomers (83.4%), the highest selectivity to di-branched isomers (28.1%) and the minimum hydrocracking selectivity (15.7%) in n-nonane hydroisomerization.

Publisher

Elsevier BV

Subject

Economic Geology,Geochemistry and Petrology,Geology,Geophysics,Energy Engineering and Power Technology,Geotechnical Engineering and Engineering Geology,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3