The primary controlling parameters of porosity, permeability, and seepage capability of tight gas reservoirs: a case study on Upper Paleozoic Formation in the eastern Ordos Basin, Northern China

Author:

Qu Hong-Jun,Yang Bo,Tian Xia-He,Liu Xin-She,Yang Huan,Dong Wen-Wu,Chen Ya-Hui

Abstract

Abstract Tight sandstone gas (hereafter “tight gas”) has become a subject of unconventional gas exploration globally. The large-scale development and use of tight gas resources in the USA, in particular, facilitated the rapid rebound of natural gas production in the USA, in addition to driving the rapid development of tight gas worldwide. In the eastern Ordos Basin, the Upper Paleozoic feature includes multiple layers of gas, a shallow depth, and notable potential for exploration and development. However, the reservoirs in the area are relatively tight, exhibit strong heterogeneity, and possess a complex micropore structure, thus restricting the effective economic development of oil and gas. Thus, research on the primary parameters controlling pore throat structure and the seepage capability of low-permeability reservoirs will be beneficial for the efficient exploration and development of natural gas in the eastern Ordos Basin. The parameters of reservoir porosity and percolation ability, as well as permeability, were analyzed using systematic sampling of the of the Upper Paleozoic Benxi, Taiyuan, and Shanxi Formations in the eastern Ordos Basin, constant-rate mercury injection experiments, nuclear magnetic resonance analysis, and gas–water-phase experimental studies. The results indicate that reservoir porosity is controlled by the effective pore volume and number, whereas permeability is controlled by the largest throat radius, rather than the average. The effective pore volume controls the movable fluid saturation, while reservoir percolation capability is controlled by the effective pore volume, irreducible water saturation, and size of the gas–water two-phase seepage zone.

Publisher

Elsevier BV

Subject

Economic Geology,Geochemistry and Petrology,Geology,Geophysics,Energy Engineering and Power Technology,Geotechnical Engineering and Engineering Geology,Fuel Technology

Reference45 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3