Simulation on hydrodynamics of non-spherical particulate system using a drag coefficient correlation based on artificial neural network

Author:

Yan Sheng-Nan,Wang Tian-Yu,Tang Tian-Qi,Ren An-Xing,He Yu-Rong

Abstract

AbstractFluidization of non-spherical particles is very common in petroleum engineering. Understanding the complex phenomenon of non-spherical particle flow is of great significance. In this paper, coupled with two-fluid model, the drag coefficient correlation based on artificial neural network was applied in the simulations of a bubbling fluidized bed filled with non-spherical particles. The simulation results were compared with the experimental data from the literature. Good agreement between the experimental data and the simulation results reveals that the modified drag model can accurately capture the interaction between the gas phase and solid phase. Then, several cases of different particles, including tetrahedron, cube, and sphere, together with the nylon beads used in the model validation, were employed in the simulations to study the effect of particle shape on the flow behaviors in the bubbling fluidized bed. Particle shape affects the hydrodynamics of non-spherical particles mainly on microscale. This work can be a basis and reference for the utilization of artificial neural network in the investigation of drag coefficient correlation in the dense gas–solid two-phase flow. Moreover, the proposed drag coefficient correlation provides one more option when investigating the hydrodynamics of non-spherical particles in the gas–solid fluidized bed.

Publisher

Elsevier BV

Subject

Economic Geology,Geochemistry and Petrology,Geology,Geophysics,Energy Engineering and Power Technology,Geotechnical Engineering and Engineering Geology,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3