A novel complex network-based deep learning method for characterizing gas–liquid two-phase flow

Author:

Gao Zhong-Ke,Liu Ming-Xu,Dang Wei-Dong,Cai Qing

Abstract

AbstractGas–liquid two-phase flow widely exits in production and transportation of petroleum industry. Characterizing gas–liquid flow and measuring flow parameters represent challenges of great importance, which contribute to the recognition of flow regime and the optimal design of industrial equipment. In this paper, we propose a novel complex network-based deep learning method for characterizing gas–liquid flow. Firstly, we map the multichannel measurements to multiple limited penetrable visibility graphs (LPVGs) and obtain their degree sequences as the graph representation. Based on the degree distribution, we analyze the complicated flow behavior under different flow structures. Then, we design a dual-input convolutional neural network to fuse the raw signals and the graph representation of LPVGs for the classification of flow structures and measurement of gas void fraction. We implement the model with two parallel branches with the same structure, each corresponding to one input. Each branch consists of a channel-projection convolutional part, a spatial–temporal convolutional part, a dense block and an attention module. The outputs of the two branches are concatenated and fed into several full connected layers for the classification and measurement. At last, our method achieves an accuracy of 95.3% for the classification of flow structures, and a mean squared error of 0.0038 and a mean absolute percent error of 6.3% for the measurement of gas void fraction. Our method provides a promising solution for characterizing gas–liquid flow and measuring flow parameters.

Publisher

Elsevier BV

Subject

Economic Geology,Geochemistry and Petrology,Geology,Geophysics,Energy Engineering and Power Technology,Geotechnical Engineering and Engineering Geology,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3