Abstract
AbstractUsing large components made of nodular cast iron (GJS) in wind turbines enables the application of lightweight construction through the high degree of design freedom. Besides the sand-casting process, casting into a permanent metal mould, i.e. chill casting, leads to a finer microstructure and higher quasi-static mechanical properties as well as higher fatigue strength. Unfortunately, in present design methodologies specific fatigue data is only available for sand cast and not for chilled cast GJS. Thus, lightweight design strategies for large, chilled cast components are not achievable, which led to the publicly funded project “Gusswelle”. Based on material investigations of EN-GJS-400-18-LT chill cast, an optimized hollow rotor shaft is developed. The design process and the resulting shaft design are presented. The optimized hollow rotor shaft prototype will be tested on a full-scale test bench to validate the design methodology. The intended validation plan as well as the test bench setup is shown in this paper. Furthermore, the decreasing wall thickness influences the interference fit between main bearing and hollow rotor shaft. Thus, through the applied bending moment, inner ring creep is more probable to occur in the main bearing seat. The creeping behaviour is investigated with finite element simulations and a measuring method is presented.
Funder
Fraunhofer Institute for Wind Energy and Energy System Technology (IWES)
Publisher
Springer Science and Business Media LLC
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献