Potentials and challenges in enhancing the gear transmission development with machine learning methods—a review

Author:

Sendlbeck StefanORCID,Maurer Matthias,Otto Michael,Stahl Karsten

Abstract

AbstractThe electrification of vehicle powertrains and the expected engineering labor shortage are ongoing key challenges in the gear transmission development. Because traditional methods reach limits, the solution is further automating the design process while enabling flexible and optimal design solutions even with rapidly changing constraints and requirements. We therefore review the current design process, review state-of-the-art methods for automated gear transmission design, and evaluate their potential and the challenges in combination with using machine learning methods. In focus are grammars and graph grammars in particular, which offer an approach to represent and generate the relational structure of transmission topologies or shaft arrangements. Other potential approaches are knowledge-based engineering, which allows to choose various predefined expert design solution and combine them to new designs, and constraint programming for gear transmission generation. Combining these methods with latest advances in reinforcement learning, machine learning for inverse problem-solving, and graph neural networks offers promising capabilities for automatic topology generation and dimensioning of gear transmissions.

Funder

Technische Universität München

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Reference105 articles.

1. American Gear Manufacturers Association (2022) gear technology Jan/Feb 2022

2. Ortner M, Schörghuber C, Scheidel S, Hasenbichler G (2018) Selektion der optimalen Antriebsstrangkonfiguration für künftige Anforderungen an Nutzfahrzeuge. MTZ Motortech Z 79(10):30–37. https://doi.org/10.1007/s35146-018-0083-x

3. FVA Antriebstechnik Software. https://www.fva-service.de/de/software/. Accessed 7 Sept 2022

4. GWJ Technology GmbH (2020) User manual gearengineer software

5. Kahraman A Load distribution program. https://mae.osu.edu/gearlab/research. Accessed 3 Jan 2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3