Influence of process parameters on the residual stress state and properties in disc springs made by incremental sheet forming (ISF)

Author:

Afzal Muhammad JunaidORCID,Hajavifard Ramin,Buhl Johannes,Walther Frank,Bambach Markus

Abstract

AbstractDisc springs are machine elements that are used when high forces need to be supplied and in limited installation space. They need to fulfil high demands on the stability of the spring characteristics, reliability and lifetime. In corrosive environments, metastable austenitic stainless steels (MASS) disc springs are often used. Tensile stresses that occur during service limit the lifetime of disc springs. Usually, their durability is enhanced by generating favorable compressive residual stresses using shot peening operations. Such operations lead to extra efforts and additional production costs. In this study, the adaptive and targeted generation of residual stresses via incremental sheet forming (ISF) is investigated as alternative to shot peening focusing on EN 1.4310 and EN 1.4401 stainless steel. Previous work has shown that ISF is capable of controlling the radial and tangential stresses in the springs. However, no analysis of the influence of the residual stress state in the rolled sheet strips and the ISF process parameters was performed. The goal of the current work is to analyze the evolution of residual stress during rolling and subsequent incremental forming of disc springs. In order to examine the role of dissipation and temperature increases in the rolling process, sheet blanks rolled at room and elevated temperature are analyzed. The characteristics of the compressive residual stresses induced by ISF are studied for different process parameters. X‑ray diffraction is used to investigate the buildup of these stresses. Using ISF, the generation of compressive residual stresses can be integrated into the forming process of disc springs, and further post-treatment may be skipped. The results show that the residual stress state in the rolled material is crucial, which requires tight control of the rolling temperature. Another result is that ISF is able to yield high compressive residual stresses and improved spring characteristics when small tool diameters and step-down values are used.

Funder

Brandenburgische TU Cottbus-Senftenberg

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3