Locally resolved stress measurement in the ultra-hard composites polycrystalline diamond and polycrystalline cubic boron nitride

Author:

Breidenstein BerndORCID,Vogel NilsORCID

Abstract

AbstractCutting tools made of the ultra-hard composites polycrystalline diamond and polycrystalline boron nitride are being used in more and more sectors of machining. Due to the laborious preparation processes such as grinding, brushing, electrical discharge and laser machining, the subsurface of these tools is strongly stressed mechanically and thermally. This also changes the residual stress state in the highly loaded cutting edge area. The measurement of these residual stresses is not possible by established XRD methods due to the highly curved surface of the cutting edge. The measurement method Raman spectroscopy shows high potential for this application, but conversion factors are necessary for the application. These factors enable the conversion of the stress-induced peak shift in the Raman spectrum into absolute residual stress values. Previous conversion factors are mainly based on hydrostatic load cases, which, however, cannot be transferred to the application on cutting tools. In this work, axial load cases were provided by bending and conversion factors were determined by comparing XRD stress measurements and Raman peak shifts. The conversion factors determined were then plotted against existing results from other studies and the causes for the deviations that occurred were determined. By this, for the first time, a conversion factor for an axial load case for cubic boron nitride could be determined and it could be shown that, as for diamond, it differs significantly from the hydrostatic load case.

Funder

Deutsche Forschungsgemeinschaft

Gottfried Wilhelm Leibniz Universität Hannover

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3