Usability of SCADA as predictive maintenance for wind turbines

Author:

Roscher BjörnORCID,Schelenz RalfORCID

Abstract

AbstractWind energy is an essential source of renewable energy. However, to compete with conventional energy sources, energy needs to be produced at low costs. An ideal situation would be to have no costly, unscheduled maintenance, preferably. Currently, O&M are half of the yearly expenses. The O&M costs are kept low by scheduled and reactive maintenance. An alternative is predictive maintenance. This method aims to act before any critical and costly repair is required. Additionally, the component is used to its full potential. However, such a strategy requires a damage indication, similar to one provided by a condition monitoring system (CMS). This paper investigates if Supervisory Control and Data Acquisition (SCADA) can be used as a damage indicator and CMS. Since 2006, every wind turbine is obliged to use such a SCADA-system. SCADA records a 10-minute average, maximum, minimum, and standard deviation of multiple technical information channels. Analytics can use those data to determine the normal behavior and a prediction model of the wind turbine. The authors investigated statistical and data mining methods to predict main bearing faults. The methods indicated a defect of up to 6 months before its maintenance.

Funder

RWTH Aachen

RWTH Aachen University

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Reference14 articles.

1. Burger B (2020) Öffentliche Nettostromerzeugung in Deutschland im Jahr 2019. Freiburg,

2. Kost C, Shammugam S, Jülch V, Nguyen H‑T, Schlegl T (2018) Stromgestehungskosten erneuerbare Energien, ISE Fraunhofer. https://www.ise.fraunhofer.de/content/dam/ise/de/documents/publications/studies/DE2018_ISE_Studie_Stromgestehungskosten_Erneuerbare_Energien.pdf. Accessed 07 April 2020

3. IEC Internationalen Elektrotechnischen Kommission; IEC 61400‑1 (VDE 0127-1):2011-08: Windenergieanlagen – Teil 1,2015.

4. Kusiak A, Zhang Z (2010) Analysis of wind turbine vibrations based on SCADA data. J Sol Energy Eng 132(3): https://doi.org/10.1115/1.4001461

5. Kusiak A, Verma A (2011) Prediction of status patterns of wind turbines: a data-mining approach. J Sol Energy Eng 133(1): https://doi.org/10.1115/1.4003188

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3