Deep nitriding—contact and bending strength of gears with increased nitriding hardening depth

Author:

Sitzmann AndréORCID,Hoja Stefanie,Schurer Stefan,Tobie Thomas,Stahl Karsten

Abstract

AbstractThe load carrying capacity of gears can be significantly increased by nitriding. However, the required nitriding hardening depth depends on the stress level and the gear size. In order to achive a high fatigue resistance and durability of nitrided gears an adequate nitriding hardening depth is necessary. In industrial practice, a nitriding hardening depth (NHD) of about 0.6 mm is currently regarded as the upper limit that can be reached within a reasonable time and cost. This also limits of the load carrying capacity of nitrided gears, in particular with increasing gear sizes. Therefore, case hardening is the main treatment used with increasing gear sizes, although nitriding provides some advantages over case hardening. However, with an increased nitriding hardening depth, a significant increase in the load carrying capacity of nitrided gears for medium and larger gear sizes could be expected, which will be discussed in this publication. In order to evaluate the expected potential of the load carrying capacity of nitrided gears with an increased nitriding hardening depth of NHD ≈ 0.8 to 1.0 mm (deep nitriding heat treatment) made out of the materials 31CrMoV9 (1.8519), 30CrNiMo8 (1.6580) and 32CDV13 (alloy for aerospace applications according to AIR 9160), experimental investigations were carried out, which will be discussed in this publication. Both, the tooth root bending strength and the flank load carrying capacity were investigated.

Funder

Technische Universität München

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Reference20 articles.

1. Dobler F, Nadolski D, Tobie T, Steinbacher M, Stahl K, Hoffmann F (2016) Influence of hardening pattern, base material and residual stress condition on the tooth root bending strength of induction hardened gears. In: Proceedings of the International Conference on Power Transmissions 2016 (ICPT 2016), pp 287–294

2. ISO 6336-5:2016(E): Calculation of load capacity of spur and helical gears—Part 5: Strength and quality of materials

3. Zornek B (2018) Untersuchungen zur Flankentragfähigkeit vergüteter und nitrierter Innen- und Außenverzahnungen [Investigations into the flank load carrying capacity of through hardened and nitrided internal and external gears]. Dissertation, Technical University of Munich

4. FVA journal;N Bretl,2012

5. Geitner M, Zornek B, Tobie T, Stahl K (2021) Investigations on the micro-pitting and wear behavior of nitrided internal gears. IOP Conf Ser Mater Sci Eng 1097(1):12005

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3