Rockfall source identification and trajectory analysis from UAV-based data in volcano-tectonic areas: a case study from Ischia Island, Southern Italy

Author:

Massaro L.ORCID,Forte G.,De Falco M.,Rauseo F.,Santo A.

Abstract

AbstractIschia (Southern Italy) is a volcanic island of the Phlegrean Volcanic District that was historically affected by multiple geological hazards, including floodings, landslides, rockfalls, and earthquakes. In this study, rockfall stability is analysed with an integrated approach aimed at investigating the rockfall source, the propagation, and the deposition areas. The case study is represented by two outcrops over a 400-m-wide cliff made of Green Tuff and located on the western area of Mt. Epomeo. They are respectively located at 280 and 420 m a.s.l., just uphill the village of Frassitelli, Forio d’Ischia, which is an area of high residential, tourist, and agricultural importance. We analysed the fracture systems of the tuff cliff to compute the kinematic analysis of the potential failure mechanisms and to perform numerical simulations of rockfall scenarios. Successively, numerical simulations of rockfall scenarios were computed based on the acquired structural information. This allowed us to identify the most hazardous scenarios based on the rock trajectories and the percentage of rock blocks affecting the urban area. The influence of the rock shape and volume on the rockfall trajectories was analysed. In the most likely scenarios, we observed that 15–25% of the rock blocks bypass the geomorphological barriers and reach the urban area, with kinetic energy values spanning between 102 and 104 kJ. Such detailed rockfall hazard analysis allowed the definition of the mitigation interventions necessary for the protection of the nearby residential area.

Funder

Dipartimento della Protezione Civile, Presidenza del Consiglio dei Ministri

Università degli Studi di Napoli Federico II

Publisher

Springer Science and Business Media LLC

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3