IoT-based hydrological monitoring of water-induced landslides: a case study in central Norway

Author:

Oguz Emir AhmetORCID,Depina IvanORCID,Myhre BårdORCID,Devoli Graziella,Rustad Helge,Thakur VikasORCID

Abstract

AbstractWater-induced landslides pose a great risk to the society in Norway due to their high frequency and capacity to evolve in destructive debris flows. Hydrological monitoring is a widely employed method to understand the initiation mechanism of water-induced landslides under various climate conditions. Hydrological monitoring systems can provide relevant information that can be utilized in landslide early warning systems to mitigate the risk by issuing early warnings. These monitoring systems can be significantly enhanced, and wider deployments can be achieved through the recent developments within the domain of the Internet of Things (IoT). Therefore, this study aims to demonstrate a case study on an automated hydrological monitoring system supported by the IoT-based state-of-the-art technologies employing public mobile networks. Volumetric water content (VWC) sensors, suction sensors, and piezometers were used in the hydrological monitoring system to monitor the hydrological activities. The monitoring system was deployed in a case study area in central Norway at two locations of high susceptible geological units. During monitored period, the IoT-based hydrological monitoring system provided novel and valuable insights into the hydrological response of slopes to seasonally cold climates in terms of VWC and matric suction. The effects of rainfall, snow melting, ground freezing, and thawing were captured. The current study also made an attempt to integrate the collected data into a physical-based landslide susceptibility model to obtain a more consistent and reliable hazard assessment.

Funder

Norges Forskningsråd

NTNU Norwegian University of Science and Technology

Publisher

Springer Science and Business Media LLC

Subject

Geology,Geotechnical Engineering and Engineering Geology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3