Influence of water content on the basic friction angle of porous limestones—experimental study using an automated tilting table

Author:

Rabat Á.ORCID,Tomás R.,Cano M.,Pérez-Rey I.,Siles J. S.,Alejano L. R.

Abstract

AbstractAn accurate evaluation of the shear strength of discontinuities is frequently a key aspect for determining the safety of mining and civil engineering works and for solving instability issues at rock mass scale. This is usually done by using empirical shear strength criteria in which the basic friction angle (φb) is a relevant input parameter. Tilt testing is probably the most widespread method to obtain the φb due to its simplicity and low cost, but previous research has demonstrated that the results are strongly affected by several factors (e.g. surface finishing, cutting speed, specimen geometry, wear, time and rock type). In this connection, despite it is well known that water significantly reduces the mechanical properties of sedimentary rocks, very scarce research has focused on assessing the impact of the variations in water content on tilt test results. With the aim to fill this gap, saw-cut slabs of three limestone lithotypes were tilt tested in dry state, wet condition (fully water saturated, non-submerged samples) and under exposure to an environmental relative humidity (RH) of 90%. The results revealed that full water saturation caused moderate φb reductions in two lithotypes and a φb increase in one lithotype. This can be explained by their different microstructure and mineralogy, which makes that lubrication effect prevails over suction effect or vice versa. However, the exposure to a high RH environment did not cause significant φb variations. In addition, some important considerations related to tilt testing are provided and discussed, such as the intrinsic variability of the sliding angle (β) and the impact of multiple sliding on the same rock surfaces on β.

Funder

Universidad de Alicante

Publisher

Springer Science and Business Media LLC

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3