Soil–water interaction affecting a deep-seated landslide: From field monitoring to experimental analysis

Author:

Kang Xuan,Wang Shun,Wu Wei,Xu Guangli,Zhao Jinqian,Liu Fusheng

Abstract

AbstractMost deep-seated landslides are characterized by large volumes with deep shear surfaces. They are sensitive to hydrological forcing, especially in climate change scenarios. This paper studies the role of soil–water interaction in affecting the motion of a deep-seated landslide near the southeast coast of China, where seasonal rainfall combined with annual typhoons caused the instability of a previous stable slope. A comprehensive investigation consisting of field monitoring and experiments of soil–water interaction is carried out. The monitoring data show that the landslide exhibits alternate dormant and active stages, corresponding to rainy and dry seasons, respectively. The enduring precipitations predominate the landslide motion, while intensive rainfall brought by typhoon events leads to transient deformation. In addition, wet treatment of intact and reconstituted soils is adopted to mimic the interaction between rainwater and landslide material. The results obtained from in-situ and laboratory direct shear tests indicate that the soil–water interaction is time-dependent. The long-term interaction gives rise to significant strength reduction of soils, thereby regulating the movement of the landslide.

Funder

National Natural Science Foundation of China

H2020 Marie Skłodowska-Curie Actions

University of Natural Resources and Life Sciences Vienna

Publisher

Springer Science and Business Media LLC

Subject

Geology,Geotechnical Engineering and Engineering Geology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3