Rock recognition and identification for selective mechanical mining: a self-adaptive artificial neural network approach

Author:

Xu RachelORCID,Sellers Ewan J.,Fathi-Salmi Ebrahim

Abstract

AbstractIn situ characterisation of rock is crucial for mine planning and design. Recent developments in machine learning (ML) have enabled the whole learning, reasoning, and decision-making process to be more efficient and accurate. Despite these developments, the application of ML in rock-cutting is at an early stage due to the lack of mining applications of mechanised excavation leading to limited availability of data sets and the lack of the expert knowledge required when fine-tuning models. This study presents a novel approach for rock identification during mechanical mining by applying a self-adaptive artificial neural network (ANN) model to classify the rock types for selective cutting, in which datasets from two novel cutting operations (actuated disc cutting (ADC) and oscillating disc cutting (ODC)) were employed to test and train a model. The model was also configured with the Bayesian optimization algorithm to determine optimal hyperparameters in an automated manner. By comparing the performance of each evaluation, the model was trained to identify the best set of hypermeters at which uncertainty is minimal. Further testing indicated the model is very accurate in classifying rock types for ADC as the accuracy, recall, and precision all equal unity. Some misclassifications occurred for ODC with the accuracy, recall, and precision ranging from 0.68 to 0.99. The promising results proved the model is a robust and scalable tool for classifying the rock types for selective cutting operations enabling the interpretation to be performed more precisely, selectively, and efficiently. Since mechanical cutting requires significant energy, any improvement in matching machine characteristics to the rock mass will increase productivity, and energy efficiency and reduce cost.

Funder

Commonwealth Scientific and Industrial Research Organisation

Publisher

Springer Science and Business Media LLC

Subject

Geology,Geotechnical Engineering and Engineering Geology

Reference66 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3