The effect of metamorphism on the aggregate properties of gabbroic rocks

Author:

Urueña CindyORCID,Möller CharlotteORCID,Andersson JennyORCID,Lindqvist Jan-ErikORCID,Göransson Mattias

Abstract

Abstract Granitic rocks are durable materials sought after for the production of road and railroad aggregates. Granitic bedrock commonly, however, includes gabbroic components, which may enhance or decrease the aggregate performance. This study evaluates the variation in resistance to fragmentation (Los Angeles value, LA) and wear/abrasion (micro-Deval value, MDE) for the fraction 10/14 mm of gabbro in different metamorphic states. Samples were collected along a 150-km profile where metamorphic conditions grade from epidote–amphibolite to high-pressure granulite-facies, and the degree of metamorphic recrystallization varies with the amount of hydrous fluid. Rocks with no or incipient metamorphic recrystallization preserving their primary igneous fabric and interlocking texture meet the criteria for both asphalt base course and track ballast in railroad, with LA and MDE values below 25% and 14%, respectively. Mafic granulite and fine-grained amphibolite have LA values below 25% and can be used in unbound layers. Mafic granulites crystallize at high temperatures but commonly preserve a relict igneous texture due to limited hydration. Coarse-grained amphibolite and migmatitic amphibolite have the poorest performance. They recrystallized at hydrous conditions, leading to complete recrystallization, grain coarsening, and loss of interlocking igneous texture. This study shows that both temperature and infiltration of hydrous fluids significantly affect the technical properties. Even at high metamorphic temperatures, gabbroic rocks may yield aggregates of high technical performance. At hydrous conditions, however, recrystallization results in rock aggregates suitable for unbound layers only. The variation in metamorphic grade and hydration is easily assessed by the geologist in the field and by using standard petrographic microscopy.

Funder

Sveriges Geologiska Undersökning

Lund University

Publisher

Springer Science and Business Media LLC

Subject

Geology,Geotechnical Engineering and Engineering Geology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3