Ambient noise and ERT data provide insights into the structure of co-seismic rock avalanche deposits in Sichuan (China)

Author:

Del Gaudio V.ORCID,Wasowski J.,Hu W.,Capone P.,Venisti N.,Li Y.

Abstract

AbstractThe post-seismic history of the 2008 Mw7.9 Wenchuan earthquake shows that marginally stable deposits of large co-seismic landslide dams can pose persistent debris flow hazards for the downstream areas. Here, we combine analyses of single-station recordings of ambient noise with electrical resistivity tomography (ERT) surveys to explore the potential of drawing information on structure and geometry of the deposit of a large rock avalanche triggered by the Mw 7.9 2008 Wenchuan earthquake, which dammed the Yangjia stream in the Sichuan Province (China). The substantial thickness and heterogeneity of this kind of deposits limit the application of standard geophysical techniques, like active seismic surveys, which require highly energetic sources and long linear geophone arrays to reach adequate investigation depths. Passive single-station methods, relying on ambient noise recordings to determine site resonance properties, controlled by the contrast between soft surface layers and a stiffer substratum, offer the opportunity of investigating subsoil properties down to larger depths. In particular, we use a recently developed technique, which isolates the contribution of Rayleigh waves to ambient noise and draws information on sub-soil properties from the inversion of Rayleigh wave ellipticity curves plotted as function of frequency. In this framework, the ERT data can support the ellipticity curve inversion, typically affected by highly non-univocal solutions, by providing constraints for defining of the thickness of the uppermost surficial layers. The results allowed inferring the overlap of different layers within the 2008 rock avalanche deposit, as well as estimating lateral variations in their thickness and S-wave (Vs) velocities.

Funder

Università degli Studi di Bari Aldo Moro

Publisher

Springer Science and Business Media LLC

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3