The Subjectivity in Identification of Martian Channel Networks and Its Implication for Citizen Science Projects

Author:

Bahia R. S.ORCID,Jones M.

Abstract

AbstractThe Martian surface is incised by numerous valley networks, which indicate the planet experienced sustained widespread flowing water in the past (e.g. Carr in Water on Mars, Oxford University Press, New York, 1996; Phil Trans R Soc A 370:2193–2212, 2012. 10.1098/rsta.2011.0500). Examining the distribution and geometries of these valley networks provides invaluable information about the Martian climate during the period of formation. The recent advancement in high resolution images has provided an opportunity to build upon past valley maps of Mars (Bahia et al. in LPSC 2018, 2018), however, the identification of these valley networks is extremely time-consuming. A citizen science project may aid in reducing this time-consuming process; this project conducts a valley mapping task with participants of varying expertise in valley mapping to determine whether a citizen science project of this kind should be worth pursuing. This was conducted in a region adjacent to Vogel Crater (36.1° S, 10.2° W). Repeated mapping of the area (a repeatability test) found that participants with low experience in valley mapping (22 a-level physics student’s representative of the public) were inconsistent when mapping valleys. Additionally, when comparing the results of participants within this group (a reproducibility test), the majority of reproduced valleys are false positives (i.e. incorrectly traced valleys). These results were consistent with those found for the medium experience group (45 2nd year geology undergraduates). The validated tracings of the low experience group improve upon the number and total length of valleys mapped by previous studies (Hynek et al. in J Geophys Res 115:1–14, 2010). To validate these valleys requires the input of an expert to remove false positives which is less time consuming than manually mapping the images; this may indicate that a citizen science project is worth pursuing. However, to effectively identify the maximum amount of valleys an expert is required.

Funder

Science and Technology Facilities Council

Publisher

Springer Science and Business Media LLC

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Astronomy and Astrophysics

Reference16 articles.

1. R.S. Bahia, M. Jones, N. Mitchell, S. Covey-Crump, The evolution of surface topography and environment of Mars from channel networks, in LPSC 2018 (2018), p. 1924

2. R.S. Bahia, M. Jones, S. Covey-Crump, N. Mitchell, The application of Hack’s law and Flint’s law to Martian valley networks and its implications for the noachian climate, in LPSC 2019 (2019), p. 1197

3. R. Bugiolacchi, S. Bamford, P. Tar, N. Thacker, I. Crawford, K. Joy, P. Grindrod, C. Lintott, The moon zoo citizen science project: preliminary results for the apollo 17 landing site. Icarus 271, 30–48 (2016)

4. G. Caldarelli, P. De Los Rios, M. Montuori, V.D.P. Servedio, Statistical features of drainage basins in Mars channel networks. Eur. Phys. J. B Condens. Matter Complex Syst. 38, 387–391 (2004)

5. G. Caprarelli, B.Y. Wang, Wet Mars implications of revised scaling calculations for Evros Vallis. Aust. J. Earth Sci. 59, 263–276 (2012)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3