The Geochemical Legacy of Low-Temperature, Percolation-Driven Core Formation in Planetesimals

Author:

Bromiley Geoffrey DavidORCID

Abstract

AbstractMechanisms for core formation in differentiated bodies in the early solar system are poorly constrained. At temperatures below those required to extensively melt planetesimals, core formation could have proceeded via percolation of metallic liquids. Although there is some geochemical data to support such ‘low-temperature’ segregation, experimental studies and simulations suggest that percolation-driven segregation might have only contributed to core formation in a proportion of fully-differentiated bodies. Here, the effects low-temperature core-formation on elemental compositions of planetesimal cores and mantles are explored. Immiscibility of Fe-rich and FeS-rich liquids will occur in all core-formation models, including those involving large fraction silicate melting. Light element content of cores (Si, O, C, P, S) depends on conditions under which Fe-rich and FeS-rich liquids segregated, especially pressure and oxygen fugacity. The S contents of FeS-rich liquids significantly exceed eutectic compositions in Fe–Ni–S systems and cannot be reconciled with S-contents of parent bodies to magmatic iron meteorites. Furthermore, there is limited data on trace element partitioning between FeS-rich and Fe-rich phases, and solid/melt partitioning models cannot be readily applied to FeS-rich liquids. Interaction of metallic liquids with minor phases stable up to low fraction silicate melting could provide a means for determining the extent of silicate melting prior to initiation of core-formation. However, element partitioning in most core-formation models remains poorly constrained, and it is likely that conditions under which segregation of metallic liquid occurred, especially oxygen fugacity and pressure, had as significant a control on planetesimal composition as segregation mechanisms and extent of silicate melting.

Publisher

Springer Science and Business Media LLC

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3