Revolutionizing engineered cementitious composite materials (ECC): the impact of XGBoost-SHAP analysis on polyvinyl alcohol (PVA) based ECC predictions

Author:

Uddin Md NasirORCID,Al-Amin ,Hossain Shameem

Abstract

AbstractThis study integrates previous experimental data and employs machine learning (ML) methods, including Random Forest (RF), Support Vector Machine (SVM), Artificial Neural Network (ANN), and eXtreme Gradient Boosting (XGBoost), to predict the compressive strength (CS) and tensile strength (TS) of engineered cementitious composites (ECC). XGBoost emerged as the superior model among the four ML models, providing an interpretable and highly accurate predictive framework. To optimize the model performance, hyperparameter tuning using a fivefold cross-validation approach with the data divided into 80% training and 20% testing subsets. The Shapley Additive Explanations (SHAP) algorithm was also employed to reveal the impact of important features, such as the water/binder ratio, fly ash content, and water reducer dosage, on the model’s predictions and their interrelationships. The XGBoost demonstrates the most exemplary performance, as reflected in the R2 values of 0.92 and 0.97 for CS and TS testing, respectively. The SHAP analysis provided insights into the impact of individual features on CS and TS, shedding light on how specific characteristics influence the predictive accuracy of these properties. This highly accurate prediction model uncovers insights into correlated features, aids in creating new mix designs of ECC, and supports global efforts toward a low-carbon future in the construction industry by reducing carbon emissions.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3