Elastic surface wave attenuation in layered soil by metastructures

Author:

Zheng Xuan,Jin Yabin,Cai Runcheng,Rabczuk Timon,Zhu Hehua,Zhuang Xiaoying

Abstract

AbstractSeismic metastructures are able to effectively attenuate or convert elastic surface waves, attracting increasing attention in different areas such as civil engineering. However, the effects of the source depth and layered characteristics of viscous soil on metastructures for elastic surface wave reduction with Bragg bandgap mechanism remain challenging, which are the key issues for practical applications. In this work, we calculate the dispersion and transmission of metastructures in layered soil and confirm that the metastructures can effectively attenuate the elastic surface waves within the bandgaps. Then, the influence of the embedded depth of the metastructures, the depth of the vibrating source, layered characteristics of viscous soil on the surface vibration reduction are further discussed. It is found that surface vibration attenuation is enhanced by increasing the embedded depth of the metastructures and the density of the first layer. The width of the bandgap increases with the introduction of soil viscosity. On the contrary, the surface vibration attenuation decreases if the vibrating source is placed at a certain depth which requires the bandgap of bulk waves of the metastructures. This study of the seismic metastructures in layered soil provides a guidance in surface vibration reduction in practice.

Funder

National Natural Science Foundation of China

China Association for Science and Technology

Scientific and Innovative Action Plan of Shanghai

Science and Technology Innovation Plan Of Shanghai Science and Technology Commission

Tongji University

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3