Abstract
AbstractThe fight against global warming requires novel approaches for the defossilisation of industrial processes, and the limitation of global warming requires options for negative carbon dioxide (CO2) emissions. The production of carbon fibre (CF) is an energy-intensive chain of processes which cause CO2 emissions. Having in mind the high market growth for CF composite materials, CF production might stand against the fight against global warming. CF also offers a huge mitigation opportunity, as CF contain up to 95–98wt% of pure carbon. This study investigates possible ways to link CF production to atmospheric CO2, enabling negative CO2 emissions through CF manufacturing. Production value chains for CF based on poly(acrylonitrile) (PAN) and pitch, the two most important CF precursor materials, are developed and analysed regarding their energy and mass balances. The PAN value chain is further assessed regarding a first economic estimation of CF production cost with atmospheric CO2 as carbon source. The results show that production costs per ton CO2 removed might be unattractive at 2949 €/tCO2 in 2050. However, from a CF perspective, production cost of 10.3 €/kgCF in 2050 might enable a business case for electricity-based CF production from atmospheric CO2 in the future. Each ton of CF produced can store about 3.5 tCO2 due to a very high carbon share in the final product. With an increasing market for CF, a total negative emission potential of at least 0.7 GtCO2 per year can be enabled by 2050. Further research opportunities are discussed.
Funder
Business Finland
Academy of Finland
Jenny ja Antti Wihurin Rahasto
LUT University (previously Lappeenranta University of Technology
Publisher
Springer Science and Business Media LLC
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献