Abstract
AbstractOcean deoxygenation and expansion and intensification of hypoxia in the ocean are a major, growing threat to marine ecosystems. Measures currently used to protect marine biodiversity (e.g., marine protected areas) are ineffective in countering this threat. Here, we highlight the example of the Gulf of St. Lawrence in eastern Canada, where oxygen loss is not only due to eutrophication (which can be mitigated by nutrient controls) but also is a consequence of ocean circulation change and warming. Climate-related loss of oxygen will be an increasingly widespread source of risk to marine biodiversity over this century. Again using the Gulf of St. Lawrence as an example, we show that production of oxygen by the green hydrogen industry can be comparable to the loss rate of dissolved oxygen on large spatial scales, offering new possibilities for mitigation. However, this mitigation approach has rarely been considered for marine environments to date. Given confluence of increasing risk to marine ecosystems from oxygen loss and rapid emergence, worldwide, of industrial sources of pure oxygen, which are likely to be located in coastal regions, we believe this option will be proposed increasingly in coming years, including by the private sector. We argue that it is urgent for ocean scientists, engineers, and policymakers to recognize and address this emerging potential. A coordinated research effort should be established immediately in order to harness the potential of the green hydrogen industry to mitigate major impacts of climate change on marine biodiversity, and avoid any unintended negative consequences.
Funder
Marine Environmental Observation Prediction and Response Network
Réseau Quebec maritime
Publisher
Springer Science and Business Media LLC
Subject
Ecology,Global and Planetary Change
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献