Abstract
AbstractWe show that a convex body admits a translative dense packing in $$\mathbb {R}^d$$
R
d
if and only if it admits a translative economical covering.
Funder
Council on Grants of the President of the Russian Federation
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
Publisher
Springer Science and Business Media LLC
Subject
Computational Theory and Mathematics,Discrete Mathematics and Combinatorics,Geometry and Topology,Theoretical Computer Science
Reference22 articles.
1. Brass, P., Moser, W., Pach, J.: Research Problems in Discrete Geometry. Springer, New York (2005)
2. Dowker, C.H.: On minimum circumscribed polygons. Bull. Am. Math. Soc. 50, 120–122 (1944)
3. Fejes Tóth, G.: A note on covering by convex bodies. Can. Math. Bull. 52(3), 361–365 (2009)
4. Algorithms and Combinatorics;G Fejes Tóth,1993
5. Fejes Tóth, G., Kuperberg, W.: Packing and covering with convex sets. In: Gruber, P.M., Wills, J.W. (eds.) Handbook of Convex Geometry, pp. 799–860. North-Holland, Amsterdam (1993)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献