1. Belkin, M., Niyogi, P.: Laplacian eigenmaps and spectral techniques for embedding and clustering. In: Diettrich, T., Becker, S., Ghahramani, Z. (eds.) Advances in Neural Information Processing Systems 14, pp. 585–591. MIT Press, Cambridge (2002)
2. Cox, T.F., Cox, M.A.A.: Multidimensional Scaling. Chapman & Hall, London (1994)
3. de Silva, V., Carlsson, G.: Topological estimation using witness complexes. In: Alexa, M., Rusinkiewicz, S. (eds.) Eurographics Symposium on Point-Based Graphics, ETH, Zürich (2004)
4. Dixon, M., Jacobs, N., Pless, R.: Finding minimal parameterizations of cylindrical image manifolds. In: CVPRW’06: Proc. 2006 Conference on Computer Vision and Pattern Recognition Workshop, Washington, DC, USA, p. 192. IEEE Computer Society, Los Alamitos (2006)
5. Donoho, D.L., Grimes, C.: Hessian eigenmaps: new locally linear embedding techniques for high-dimensional data. Technical Report TR 2003-08, Department of Statistics, Stanford University (2003)