On the Dominant of the Multicut Polytope

Author:

Chimani Markus,Juhnke MartinaORCID,Nover Alexander

Abstract

AbstractGiven a graph $$G=(V,E)$$ G = ( V , E ) and a set $$S \subseteq \left( {\begin{array}{c}V\\ 2\end{array}}\right) $$ S V 2 of terminal pairs, the minimum multicut problem asks for a minimum edge set $$\delta \subseteq E$$ δ E such that there is no s-t-path in $$G -\delta $$ G - δ for any $$\{s,t\}\in S$$ { s , t } S . For $$|S|=1$$ | S | = 1 this is the well known s-t-cut problem, but in general the minimum multicut problem is NP-complete, even if the input graph is a tree. The multicut polytope $$\textsc {MultC}^\square (G,S)$$ M U L T C ( G , S ) is the convex hull of all multicuts in G; the multicut dominant is given by $$\textsc {MultC}(G,S)=\textsc {MultC}^\square (G,S)+\mathbb {R}^E_{{\ge 0}}$$ M U L T C ( G , S ) = M U L T C ( G , S ) + R 0 E . The latter is the relevant object for the minimization problem. While polyhedra associated to several cut problems have been studied intensively there is only little knowledge for multicut. We investigate properties of the multicut dominant and in particular derive results on liftings of facet-defining inequalities. This yields a classification of all facet-defining path- and edge inequalities. Moreover, we investigate the effect of graph operations such as node splitting, edge subdivisions, and edge contractions on the multicut-dominant and its facet-defining inequalities. In addition, we introduce facet-defining inequalities supported on stars, trees, and cycles and show that the former two can be separated in polynomial time when the input graph is a tree.

Funder

Universität Osnabrück

Publisher

Springer Science and Business Media LLC

Reference32 articles.

1. Springer Monographs in Mathematics;W Bruns,2009

2. Bruns, W., Ichim, B., Römer, T., Sieg, R., Söger, C.: Normaliz. Algorithms for rational cones and affine monoids. https://normaliz.uos.de

3. Barahona, F., Mahjoub, A.R.: On the cut polytope. Math. Program. 36, 157–173 (1986)

4. Conforti, M., Kaibel, V.: Steiner cut dominants (2022)

5. Deza, M., Grötschel, M., Laurent, M.: Complete descriptions of small multicut polytopes. Appl. Geom. Discrete Math. 4, 01 (1991)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3