Symmetric Non-Negative Forms and Sums of Squares

Author:

Blekherman Grigoriy,Riener CordianORCID

Abstract

AbstractWe study symmetric non-negative forms and their relationship with symmetric sums of squares. For a fixed number of variables n and degree 2d, symmetric non-negative forms and symmetric sums of squares form closed, convex cones in the vector space of n-variate symmetric forms of degree 2d. Using representation theory of the symmetric group we characterize both cones in a uniform way. Further, we investigate the asymptotic behavior when the degree 2d is fixed and the number of variables n grows. Here, we show that, in sharp contrast to the general case, the difference between symmetric non-negative forms and sums of squares does not grow arbitrarily large for any fixed degree 2d. We consider the case of symmetric quartic forms in more detail and give a complete characterization of quartic symmetric sums of squares. Furthermore, we show that in degree 4 the cones of non-negative symmetric forms and symmetric sums of squares approach the same limit, thus these two cones asymptotically become closer as the number of variables grows. We conjecture that this is true in arbitrary degree 2d.

Funder

Tromsø Forskningsstiftelse

Publisher

Springer Science and Business Media LLC

Subject

Computational Theory and Mathematics,Discrete Mathematics and Combinatorics,Geometry and Topology,Theoretical Computer Science

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Symmetric SAGE and SONC forms, exactness and quantitative gaps;Journal of Symbolic Computation;2025-03

2. A Random Copositive Matrix Is Completely Positive with Positive Probability;SIAM Journal on Applied Algebra and Geometry;2024-08-19

3. Mutually unbiased bases: polynomial optimization and symmetry;Quantum;2024-04-30

4. On a construction method of new moment sequences;Monatshefte für Mathematik;2024-03-05

5. The poset of Specht ideals for hyperoctahedral groups;Algebraic Combinatorics;2024-01-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3