Nearly k-Distance Sets

Author:

Frankl NóraORCID,Kupavskii Andrey

Abstract

AbstractWe say that a set of points $$S\subset {{\mathbb {R}}}^d$$ S R d is an $$\varepsilon $$ ε -nearly k-distance set if there exist $$1\le t_1\le \ldots \le t_k$$ 1 t 1 t k , such that the distance between any two distinct points in S falls into $$[t_1,t_1+\varepsilon ]\cup \cdots \cup [t_k,t_k+\varepsilon ]$$ [ t 1 , t 1 + ε ] [ t k , t k + ε ] . In this paper, we study the quantity $$\begin{aligned} M_k(d) = \lim _{\varepsilon \rightarrow 0}\max {\{|S|:S\,\text { is an}\, \varepsilon \text {-nearly}\, k\text {-distance set in}\,{{\mathbb {R}}}^d\}} \end{aligned}$$ M k ( d ) = lim ε 0 max { | S | : S is an ε -nearly k -distance set in R d } and its relation to the classical quantity $$m_k(d)$$ m k ( d ) : the size of the largest k-distance set in $${{\mathbb {R}}}^d$$ R d . We obtain that $$M_k(d)=m_k(d)$$ M k ( d ) = m k ( d ) for $$k=2,3$$ k = 2 , 3 , as well as for any fixed k, provided that d is sufficiently large. The last result answers a question, proposed by Erdős, Makai, and Pach. We also address a closely related Turán-type problem, studied by Erdős, Makai, Pach, and Spencer in the 90s: given n points in $${{\mathbb {R}}}^d$$ R d , how many pairs of them form a distance that belongs to $$[t_1,t_1+1]\cup \cdots \cup [t_k,t_k+1]$$ [ t 1 , t 1 + 1 ] [ t k , t k + 1 ] , where $$t_1,\dots ,t_k$$ t 1 , , t k are fixed and any two points in the set are at distance at least 1 apart? We establish the connection between this quantity and a quantity closely related to $$M_k(d-1)$$ M k ( d - 1 ) , as well as obtain an exact answer for the same ranges kd as above.

Funder

Russian Foundation for Basic Research

Councilfor the Support of Leading Scientific Schools of the President of the Russian Federation

National Research, Development, and Innovation Office

London Mathematical Society

European Research Council

Publisher

Springer Science and Business Media LLC

Subject

Computational Theory and Mathematics,Discrete Mathematics and Combinatorics,Geometry and Topology,Theoretical Computer Science

Reference30 articles.

1. Bannai, E., Bannai, E., Stanton, D.: An upper bound for the cardinality of an $$s$$-distance subset in real Euclidean space. II. Combinatorica 3(2), 147–152 (1983)

2. Blokhuis, A.: Few-Distance Sets. CWI Tract, vol. 7. Stichting Mathematisch Centrum, Centrum voor Wiskunde en Informatica, Amsterdam (1984)

3. Brass, P.: On the maximum number of unit distances among $$n$$ points in dimension four. In: Intuitive Geometry (Budapest 1995). Bolyai Soc. Math. Stud., vol. 6, pp. 277–290. János Bolyai Math. Soc., Budapest (1997)

4. Brass, P., Moser, W., Pach, J.: Research Problems in Discrete Geometry. Springer, New York (2005)

5. Erdös, P.: On a lemma of Littlewood and Offord. Bull. Am. Math. Soc. 51, 898–902 (1945)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3