Abstract
AbstractRandomized incremental construction (RIC) is one of the most important paradigms for building geometric data structures. Clarkson and Shor developed a general theory that led to numerous algorithms which are both simple and efficient in theory and in practice. Randomized incremental constructions are usually space-optimal and time-optimal in the worst case, as exemplified by the construction of convex hulls, Delaunay triangulations, and arrangements of line segments. However, the worst-case scenario occurs rarely in practice and we would like to understand how RIC behaves when the input is nice in the sense that the associated output is significantly smaller than in the worst case. For example, it is known that the Delaunay triangulation of nicely distributed points in $${\mathbb {E}}^d$$
E
d
or on polyhedral surfaces in $${\mathbb {E}}^3$$
E
3
has linear complexity, as opposed to a worst-case complexity of $$\Theta (n^{\lfloor d/2\rfloor })$$
Θ
(
n
⌊
d
/
2
⌋
)
in the first case and quadratic in the second. The standard analysis does not provide accurate bounds on the complexity of such cases and we aim at establishing such bounds in this paper. More precisely, we will show that, in the two cases above and variants of them, the complexity of the usual RIC is $$O(n\log n)$$
O
(
n
log
n
)
, which is optimal. In other words, without any modification, RIC nicely adapts to good cases of practical value. At the heart of our proof is a bound on the complexity of the Delaunay triangulation of random subsets of $${\varepsilon }$$
ε
-nets. Along the way, we prove a probabilistic lemma for sampling without replacement, which may be of independent interest.
Funder
European Research Council
Publisher
Springer Science and Business Media LLC
Subject
Computational Theory and Mathematics,Discrete Mathematics and Combinatorics,Geometry and Topology,Theoretical Computer Science
Reference35 articles.
1. Amenta, N., Attali, D., Devillers, O.: Complexity of Delaunay triangulation for points on lower-dimensional polyhedra. In: 18th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1106–1113. ACM, New York (2007)
2. Amenta, N., Bern, M.: Surface reconstruction by Voronoi filtering. Discrete Comput. Geom. 22(4), 481–504 (1999)
3. Amenta, N., Choi, S., Rote, G.: Incremental constructions con BRIO. In: 19th Annual Symposium on Computational Geometry (San Diego 2003), pp. 211–219. ACM, New York (2003)
4. Attali, D., Boissonnat, J.-D.: A linear bound on the complexity of the Delaunay triangulation of points on polyhedral surfaces. Discrete Comput. Geom. 31(3), 369–384 (2004)
5. Attali, D., Boissonnat, J.-D., Lieutier, A.: Complexity of the Delaunay triangulation of points on surfaces the smooth case. In: 19th Annual Symposium on Computational Geometry (San Diego 2003), pp. 201–210. ACM, New York (2003)