Geometric Multicut: Shortest Fences for Separating Groups of Objects in the Plane

Author:

Abrahamsen Mikkel,Giannopoulos Panos,Löffler Maarten,Rote GünterORCID

Abstract

AbstractWe study the following separation problem: Given a collection of pairwise disjoint coloured objects in the plane with k different colours, compute a shortest “fence” F, i.e., a union of curves of minimum total length, that separates every pair of objects of different colours. Two objects are separated if F contains a simple closed curve that has one object in the interior and the other in the exterior. We refer to the problem as geometrick-cut, as it is a geometric analog to the well-studied multicut problem on graphs. We first give an $$O(n^4\log ^3\!n)$$ O ( n 4 log 3 n ) -time algorithm that computes an optimal fence for the case where the input consists of polygons of two colours with n corners in total. We then show that the problem is NP-hard for the case of three colours. Finally, we give a randomised $$4/3\cdot 1.2965$$ 4 / 3 · 1.2965 -approximation algorithm for polygons and any number of colours.

Funder

Innovation Fund Denmark

VILLUM foundation

NWO

Publisher

Springer Science and Business Media LLC

Subject

Computational Theory and Mathematics,Discrete Mathematics and Combinatorics,Geometry and Topology,Theoretical Computer Science

Reference21 articles.

1. Abrahamsen, M., Adamaszek, A., Bringmann, K., Cohen-Addad, V., Mehr, M., Rotenberg, E., Roytman, A., Thorup, M.: Fast fencing. In: 50th Annual ACM SIGACT Symposium on Theory of Computing (Los Angeles 2018), pp. 564–573. ACM, New York (2018)

2. Abrahamsen, M., Giannopoulos, P., Löffler, M., Rote, G.: Geometric multicut. In: 46th International Colloquium on Automata, Languages, and Programming. Leibniz International Proceedings in Informatics, vol. 132, # 9. Leibniz-Zent. Inform., Wadern (2019)

3. Bérczi, K., Chandrasekaran, K., Király, T., Madan, V.: Improving the integrality gap for multiway cut. In: Integer Programming and Combinatorial Optimization—20th International Conference. Lecture Notes in Comput. Sci., vol. 11480, pp. 115–127. Springer, Cham (2019)

4. Borradaile, G., Klein, P.N., Mozes, S., Nussbaum, Y., Wulff-Nilsen, Ch.: Multiple-source multiple-sink maximum flow in directed planar graphs in near-linear time. SIAM J. Comput. 46(4), 1280–1303 (2017)

5. Buchbinder, N., Schwartz, R., Weizman, B.: Simplex transformations and the multiway cut problem. In: 28th Annual ACM-SIAM Symposium on Discrete Algorithms (Barcelona 2017), pp. 2400–2410. SIAM, Philadelphia (2017)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Barrier Forming: Separating Polygonal Sets with Minimum Number of Lines;2022 International Conference on Robotics and Automation (ICRA);2022-05-23

2. Separating Bichromatic Polylines by Fixed-angle Minimal Triangles;Scientia Iranica;2022-04-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3