Adjacency Graphs of Polyhedral Surfaces

Author:

Arseneva ElenaORCID,Kleist LindaORCID,Klemz BorisORCID,Löffler Maarten,Schulz AndréORCID,Vogtenhuber BirgitORCID,Wolff AlexanderORCID

Abstract

AbstractWe study whether a given graph can be realized as an adjacency graph of the polygonal cells of a polyhedral surface in $${\mathbb {R}}^3$$ R 3 . We show that every graph is realizable as a polyhedral surface with arbitrary polygonal cells, and that this is not true if we require the cells to be convex. In particular, if the given graph contains $$K_5$$ K 5 , $$K_{5,81}$$ K 5 , 81 , or any nonplanar 3-tree as a subgraph, no such realization exists. On the other hand, all planar graphs, $$K_{4,4}$$ K 4 , 4 , and $$K_{3,5}$$ K 3 , 5 can be realized with convex cells. The same holds for any subdivision of any graph where each edge is subdivided at least once, and, by a result from McMullen et al. (Isr. J. Math. 46(1–2), 127–144 (1983)), for any hypercube. Our results have implications on the maximum density of graphs describing polyhedral surfaces with convex cells: The realizability of hypercubes shows that the maximum number of edges over all realizable n-vertex graphs is in $$\Omega (n\log n)$$ Ω ( n log n ) . From the non-realizability of $$K_{5,81}$$ K 5 , 81 , we obtain that any realizable n-vertex graph has $${\mathcal {O}}(n^{9/5})$$ O ( n 9 / 5 ) edges. As such, these graphs can be considerably denser than planar graphs, but not arbitrarily dense.

Funder

Julius-Maximilians-Universität Würzburg

Publisher

Springer Science and Business Media LLC

Subject

Computational Theory and Mathematics,Discrete Mathematics and Combinatorics,Geometry and Topology,Theoretical Computer Science

Reference53 articles.

1. Abrahamsen, M., Kleist, L., Miltzow, T.: Geometric embeddability of complexes is $$\exists {\mathbb{R}}$$-complete. In: 39th International Symposium on Computational Geometry (Dallas 2023). Leibniz International Proceedings in Informatics, vol. 258, # 1. Leibniz-Zent. Inform., Wadern (2023)

2. Alam, Md.J., Biedl, Th., Felsner, S., Kaufmann, M., Kobourov, S.G., Ueckerdt, T.: Computing cartograms with optimal complexity. Discrete Comput. Geom. 50(3), 784–810 (2013)

3. Andreev, E.M.: Convex polyhedra in Lobachevskii spaces. Mat. Sb. 81(123)(3), 445–478 (1970). (in Russian)

4. Aronov, B., van Kreveld, M., van Oostrum, R., Varadarajan, K.: Facility location on a polyhedral surface. Discrete Comput. Geom. 30(3), 357–372 (2003)

5. Arseneva, E., Kleist, L., Klemz, B., Löffler, M., Schulz, A., Vogtenhuber, B., Wolff, A.: Adjacency graphs of polyhedral surfaces. In: 37th International Symposium on Computational Geometry (2021). Leibniz International Proceedings in Informatics, vol. 189, # 11. Leibniz-Zent. Inform., Wadern (2021)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3