Dynamic Planar Voronoi Diagrams for General Distance Functions and Their Algorithmic Applications

Author:

Kaplan Haim,Mulzer WolfgangORCID,Roditty Liam,Seiferth Paul,Sharir Micha

Abstract

AbstractWe describe a new data structure for dynamic nearest neighbor queries in the plane with respect to a general family of distance functions. These include $$L_p$$ L p -norms and additively weighted Euclidean distances. Our data structure supports general (convex, pairwise disjoint) sites that have constant description complexity (e.g., points, line segments, disks, etc.). Our structure uses $$O(n \log ^3 n)$$ O ( n log 3 n ) storage, and requires polylogarithmic update and query time, improving an earlier data structure of Agarwal, Efrat, and Sharir which required $$O(n^{\varepsilon })$$ O ( n ε ) time for an update and $$O(\log n)$$ O ( log n ) time for a query [SICOMP 1999]. Our data structure has numerous applications. In all of them, it gives faster algorithms, typically reducing an $$O(n^{\varepsilon })$$ O ( n ε ) factor in the previous bounds to polylogarithmic. In addition, we give here two new applications: an efficient construction of a spanner in a disk intersection graph, and a data structure for efficient connectivity queries in a dynamic disk graph. To obtain this data structure, we combine and extend various techniques from the literature. Along the way, we obtain several side results that are of independent interest. Our data structure depends on the existence and an efficient construction of “vertical” shallow cuttings in arrangements of bivariate algebraic functions. We prove that an appropriate level in an arrangement of a random sample of a suitable size provides such a cutting. To compute it efficiently, we develop a randomized incremental construction algorithm for computing the lowest k levels in an arrangement of bivariate algebraic functions (we mostly consider here collections of functions whose lower envelope has linear complexity, as is the case in the dynamic nearest-neighbor context, under both types of norm). To analyze this algorithm, we also improve a longstanding bound on the combinatorial complexity of the vertical decomposition of these levels. Finally, to obtain our structure, we combine our vertical shallow cutting construction with Chan’s algorithm for efficiently maintaining the lower envelope of a dynamic set of planes in $${{\mathbb {R}}}^3$$ R 3 . Along the way, we also revisit Chan’s technique and present a variant that uses a single binary counter, with a simpler analysis and improved amortized deletion time (by a logarithmic factor; the insertion and query costs remain asymptotically the same).

Funder

German-Israeli Foundation for Scientific Research and Development

Israel Science Foundation

Israeli Centers for Research Excellence

Deutsche Forschungsgemeinschaft

European Research Council

United States - Israel Binational Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

Computational Theory and Mathematics,Discrete Mathematics and Combinatorics,Geometry and Topology,Theoretical Computer Science

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On reverse shortest paths in geometric proximity graphs;Computational Geometry;2024-02

2. New variants of perfect non-crossing matchings;Discrete Applied Mathematics;2024-01

3. Dynamic Connectivity in Disk Graphs;Discrete & Computational Geometry;2024-01

4. Maximum Matchings in Geometric Intersection Graphs;Discrete & Computational Geometry;2023-09-09

5. Dynamic data structures for k-nearest neighbor queries;Computational Geometry;2023-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3