Counting Arcs in $${\mathbb {F}}_q^2$$

Author:

Bhowmick Krishnendu,Roche-Newton OliverORCID

Abstract

AbstractAn arc in $$\mathbb F_q^2$$ F q 2 is a set $$P \subset \mathbb F_q^2$$ P F q 2 such that no three points of P are collinear. We use the method of hypergraph containers to prove several counting results for arcs. Let $${\mathcal {A}}(q)$$ A ( q ) denote the family of all arcs in $$\mathbb F_q^2$$ F q 2 . Our main result is the bound $$\begin{aligned} |{\mathcal {A}}(q)| \le 2^{(1+o(1))q}. \end{aligned}$$ | A ( q ) | 2 ( 1 + o ( 1 ) ) q . This matches, up to the factor hidden in the o(1) notation, the trivial lower bound that comes from considering all subsets of an arc of size q. We also give upper bounds for the number of arcs of a fixed (large) size. Let $$k \ge q^{2/3}(\log q)^3$$ k q 2 / 3 ( log q ) 3 , and let $${\mathcal {A}}(q,k)$$ A ( q , k ) denote the family of all arcs in $$\mathbb F_q^2$$ F q 2 with cardinality k. We prove that $$\begin{aligned} |{\mathcal {A}}(q,k)| \le \left( {\begin{array}{c}(1+o(1))q\\ k\end{array}}\right) . \end{aligned}$$ | A ( q , k ) | ( 1 + o ( 1 ) ) q k . This result improves a bound of Roche-Newton and Warren [12]. A nearly matching lower bound $$\begin{aligned} |{\mathcal {A}}(q,k)| \ge \left( {\begin{array}{c}q\\ k\end{array}}\right) \end{aligned}$$ | A ( q , k ) | q k follows by considering all subsets of size k of an arc of size q.

Funder

Austrian Science Fund

Johannes Kepler University Linz

Publisher

Springer Science and Business Media LLC

Reference14 articles.

1. Balogh, J., Liu, H., Sharifzadeh, M.: The number of subsets of integers with no $$k$$-term arithmetic progression. Int. Math. Res. Not. IMRN, no. 20, 6168–6186

2. Balogh, J., Morris, R., Samotij, W.: Independent sets in hypergraphs. J. Am. Math. Soc. 28(3), 669–709 (2015)

3. Balogh, J., Morris, R., Samotij, W.: The method of hypergraph containers. In: Proceedings of the International Congress of Mathematicians-Rio de Janeiro 2018. Vol. IV. Invited lectures, pp. 3059–3092 (2018)

4. Balogh, J., Samotij, W.: The number of $$K_{s, t}$$-free graphs. J. Lond. Math. Soc. 83, 368–388 (2011)

5. Balogh, J., Solymosi, J.: On the number of points in general position in the plane. Discrete Anal., Paper No. 16, 20 pp

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3