Author:
Haverkort Herman,Klein Rolf
Abstract
AbstractWe consider the Voronoi diagram of points in the real plane when the distance between two points a and b is given by $$L_p(a-b)$$
L
p
(
a
-
b
)
where $$L_p((x,y)) = (|x|^p+|y|^p)^{1/p}.$$
L
p
(
(
x
,
y
)
)
=
(
|
x
|
p
+
|
y
|
p
)
1
/
p
.
We prove that the Voronoi diagram has a limit as p converges to zero from above or from below: it is the diagram that corresponds to the distance function $$L_*((x,y)) = |xy|$$
L
∗
(
(
x
,
y
)
)
=
|
x
y
|
. In this diagram, the bisector of two points in general position consists of a line and two branches of a hyperbola that split the plane into three faces per point. We propose to name $$L_*$$
L
∗
as defined above the geometric $$L_0$$
L
0
distance.
Funder
Rheinische Friedrich-Wilhelms-Universität Bonn
Publisher
Springer Science and Business Media LLC
Subject
Computational Theory and Mathematics,Discrete Mathematics and Combinatorics,Geometry and Topology,Theoretical Computer Science
Reference7 articles.
1. Aurenhammer, F., Wallner, J., Peternell, M., Pottmann, H.: Voronoi diagrams for oriented spheres. In: Proc. 4th international conference on Voronoi diagrams in science and engineering, pp 33–37. IEEE (2007)
2. Chazelle, B., Drysdale, R.L.S., Lee, D.T.: Computing the largest empty rectangle. SIAM J. Comput. 15, 300–315 (1986)
3. Haverkort, H.: Vorosketch, version 0.37$$\beta $$. http://herman.haverkort.net/vorosketch/. Accessed 22 March 2023
4. Klein, R., Driemel, A., Haverkort, H.: Algorithmische Geometrie: Grundlagen, Methoden, Anwendungen. Springer, Wiesbaden (2022)
5. Okabe, A., Boots, B., Sugihara, K., Chiu, S.N.: Spatial tessellations: concepts and applications of Voronoi diagrams. Wiley, Hoboken (2000)