Tutte Embeddings of Tetrahedral Meshes

Author:

Alexa MarcORCID

Abstract

AbstractTutte’s embedding theorem states that every 3-connected graph without a $$K_5$$ K 5 - or $$K_{3,3}$$ K 3 , 3 -minor (i.e., a planar graph) is embedded in the plane if the outer face is in convex position and the interior vertices are convex combinations of their neighbors. We show that this result extends to simply connected tetrahedral meshes in a natural way: for the tetrahedral mesh to be embedded if the outer polyhedron is in convex position and the interior vertices are convex combination of their neighbors it is sufficient (but not necessary) that the graph of the tetrahedral mesh contains no $$K_6$$ K 6 and no $$K_{3,3,1}$$ K 3 , 3 , 1 , and all triangles incident on three boundary vertices are boundary triangles.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Springer Science and Business Media LLC

Subject

Computational Theory and Mathematics,Discrete Mathematics and Combinatorics,Geometry and Topology,Theoretical Computer Science

Reference18 articles.

1. Aigerman, N., Lipman, Y.: Orbifold Tutte embeddings. ACM Trans. Graph. 34(6), # 190 (2015)

2. Aigerman, N., Lipman, Y.: Hyperbolic orbifold Tutte embeddings. ACM Trans. Graph. 35(6), # 217 (2016)

3. Campen, M., Silva, C.T., Zorin, D.: Bijective maps from simplicial foliations. ACM Trans. Graph. 35(4), # 74 (2016)

4. Chilakamarri, K., Dean, N., Littman, M.: Three-dimensional Tutte embedding. Congr. Numer. 107, 129–140 (1995)

5. Fáry, I.: On straight line representation of planar graphs. Acta Univ. Szeged. Sect. Sci. Math. 11, 229–233 (1948)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Advancing Front Surface Mapping;Computer Graphics Forum;2024-04-30

2. VOLMAP: a Large Scale Benchmark for Volume Mappings to Simple Base Domains;Computer Graphics Forum;2023-08

3. Expansion Cones: A Progressive Volumetric Mapping Framework;ACM Transactions on Graphics;2023-07-26

4. Galaxy Maps: Localized Foliations for Bijective Volumetric Mapping;ACM Transactions on Graphics;2023-07-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3