The Tropical Non-Properness Set of a Polynomial Map

Author:

El Hilany BoulosORCID

Abstract

AbstractWe study some discrete invariants of Newton non-degenerate polynomial maps $$f: {\mathbb {K}}^n \rightarrow {\mathbb {K}}^n$$ f : K n K n defined over an algebraically closed field of Puiseux series $${\mathbb {K}}$$ K , equipped with a non-trivial valuation. It is known that the set $${\mathcal {S}}(f)$$ S ( f ) of points at which f is not finite forms an algebraic hypersurface in $${\mathbb {K}}^n$$ K n . The coordinate-wise valuation of $${\mathcal {S}}(f)\cap ({\mathbb {K}}^*)^n$$ S ( f ) ( K ) n is a piecewise-linear object in $${\mathbb {R}}^n$$ R n , which we call the tropical non-properness set of f. We show that the tropical polynomial map corresponding to f has fibers satisfying a particular combinatorial degeneracy condition exactly over points in the tropical non-properness set of f. We then use this description to outline a polyhedral method for computing this set, and to recover the fan dual to the Newton polytope of the set at which a complex polynomial map is not finite. The proofs rely on classical correspondence and structural results from tropical geometry, combined with a new description of $${\mathcal {S}}(f)$$ S ( f ) in terms of multivariate resultants.

Funder

Walter Benjaminn Programme grant

Technische Universität Braunschweig

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3